NAG Toolbox for MATLAB

f02eb

1 Purpose

f02eb computes all the eigenvalues, and optionally all the eigenvectors, of a real general matrix.

2 Syntax

3 Description

f02eb computes all the eigenvalues, and optionally all the right eigenvectors, of a real general matrix A:

$$Ax_i = \lambda_i x_i, \quad i = 1, 2, \dots, n.$$

Note that even though A is real, λ_i and x_i may be complex. If x_i is an eigenvector corresponding to a complex eigenvalue λ_i , then the complex conjugate vector \bar{x}_i is the eigenvector corresponding to the complex conjugate eigenvalue $\bar{\lambda}_i$.

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: **job** – **string**

Indicates whether eigenvectors are to be computed.

$$iob = 'N'$$

Only eigenvalues are computed.

$$job = 'V'$$

Eigenvalues and eigenvectors are computed.

Constraint: job = 'N' or 'V'.

2: **a(lda,*)** - **double array**

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n general matrix A.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the array **n**.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

[NP3663/21] f02eb.1

f02eb NAG Toolbox Manual

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldvr, ldvi, work, lwork

5.4 Output Parameters

1: a(lda,*) - double array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

If job = 'V', a contains the Schur form of the balanced input matrix A' (see Section 8).

If job = 'N', the contents of a are overwritten.

- 2: wr(*) double array
- 3: wi(*) double array

Note: the dimension of the arrays wr and wi must be at least max(1, n).

wr and **wi** hold the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues are stored in consecutive elements of **wr** and **wi**, with the eigenvalue having positive imaginary part first.

4: **vr**(**ldvr**,*) – **double** array

The first dimension, ldvr, of the array vr must satisfy

```
if job = 'N', ldvr \ge 1; if job = 'V', ldvr \ge max(1, n).
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{job} = 'V'$, and at least 1 otherwise

If $\mathbf{job} = 'V'$, \mathbf{vr} contains the real parts of the eigenvectors, with the *i*th column holding the real part of the eigenvector associated with the eigenvalue λ_i (stored in $\mathbf{wr}(i)$ and $\mathbf{wi}(i)$).

If job = 'N', vr is not referenced.

5: **vi(ldvi,*)** – **double array**

The first dimension, Idvi, of the array vi must satisfy

```
if job = 'N', ldvi \ge 1;
if job = 'V', ldvi \ge max(1, n).
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{job} = 'V'$, and at least 1 otherwise

If $\mathbf{job} = 'V'$, \mathbf{vi} contains the imaginary parts of the eigenvectors, with the *i*th column holding the imaginary part of the eigenvector associated with the eigenvalue λ_i (stored in $\mathbf{wr}(i)$ and $\mathbf{wi}(i)$).

If job = 'N', vi is not referenced.

6: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

```
On entry, \mathbf{job} \neq 'N' or 'V', or \mathbf{n} < 0, or \mathbf{lda} < \max(1, \mathbf{n}), or \mathbf{ldvr} < 1, or \mathbf{ldvr} < \mathbf{n} and \mathbf{job} = 'V',
```

f02eb.2 [NP3663/21]

or
$$\mathbf{ldvi} < 1$$
, or $\mathbf{ldvi} < \mathbf{n}$ and $\mathbf{job} = \mathbf{'V'}$, or $\mathbf{lwork} < \max(1, 4 \times \mathbf{n})$.

ifail = 2

The QR algorithm failed to compute all the eigenvalues.

7 Accuracy

If λ_i is an exact eigenvalue, and $\tilde{\lambda}_i$ is the corresponding computed value, then

$$\left|\tilde{\lambda}_i - \lambda_i\right| \le \frac{c(n)\epsilon \left\|A'\right\|_2}{s_i},$$

where c(n) is a modestly increasing function of n, ϵ is the **machine precision**, and s_i is the reciprocal condition number of λ_i ; A' is the balanced form of the original matrix A (see Section 8), and $||A'|| \leq ||A||$.

If x_i is the corresponding exact eigenvector, and \tilde{x}_i is the corresponding computed eigenvector, then the angle $\theta(x_i, x_i)$ between them is bounded as follows:

$$\theta(x_i, x_i) \le \frac{c(n)\epsilon ||A'||_2}{sep_i}$$

where sep_i is the reciprocal condition number of x_i .

The condition numbers s_i and sep_i may be computed by calling f08ql, using the Schur form of the balanced matrix A' which is returned in the array **a** when $\mathbf{job} = 'V'$.

8 Further Comments

f02eb calls functions from LAPACK in Chapter F08. It first balances the matrix, using a diagonal similarity transformation to reduce its norm; and then reduces the balanced matrix A' to upper Hessenberg form H, using an orthogonal similarity transformation $A' = QHQ^T$. If only eigenvalues are required, the function uses the Hessenberg QR algorithm to compute the eigenvalues. If the eigenvectors are required, the function first forms the orthogonal matrix Q that was used in the reduction to Hessenberg form; it then uses the Hessenberg QR algorithm to compute the Schur factorization of A' as $A' = ZTZ^T$. It computes the right eigenvectors of T by backward substitution, pre-multiplies them by Z to form the eigenvectors of A', and finally transforms the eigenvectors to those of the original matrix A.

Each eigenvector x (real or complex) is normalized so that $||x||_2 = 1$, and the element of largest absolute value is real and positive.

The time taken by the function is approximately proportional to n^3 .

9 Example

```
job = 'Vectors';
a = [0.35, 0.45, -0.14, -0.17;
      0.09, 0.0700000000000001, -0.54, 0.35;
-0.44, -0.33, -0.03, 0.17;
0.25, -0.32, -0.13, 0.11];
[aOut, wr, wi, vr, vi, ifail] = f02eb(job, a)
aOut =
     0.7995
                0.0060
                            -0.1144
                                         -0.0336
                -0.0994
                            -0.6483
                                         -0.2026
                            -0.0994
                0.2478
     0.7995
    -0.0994
```

[NP3663/21] f02eb.3

f02eb NAG Toolbox Manual

```
-0.0994
-0.1007
        0
   0.4008
   -0.4008
        0
                                0.1253
                     -0.1933
   0.6551
            -0.1933
   0.5236
             0.2519
                      0.2519
                                 0.3320
  -0.5362
             0.0972
                       0.0972
                                  0.5938
                                  0.7221
   0.0956
             0.6760
                       0.6760
vi =
             0.2546
                       -0.2546
                                       0
            -0.5224
         0
                       0.5224
                                      0
            -0.3084
         0
                       0.3084
                                       0
         0
                                       0
                 0
                            0
ifail =
           0
```

f02eb.4 (last) [NP3663/21]